*Per***-C-6 Oligosaccharide-Branched Cyclodextrin Interacting with Both the Lectin and Drug**

Naoyoshi Yasuda, Nobuyoshi Aoki,† Hideyoshi Abe, and Kenjiro Hattori* *Faculty of Engineering, Tokyo Institute of Polytechnics, Atsugi 243-0297* †*Kanagawa Industrial Technology Research Institute, Ebina 243-0435*

(Received March 10, 2000; CL-000240)

The improved dual interactions with both the lectin (PNA, a cellular receptor model) and an anticancer drug (DXR) have been observed in *per*-C-6 oligosaccharide-branched cyclodextrin (**2**) using an optical biosensor based on SPR.

Conjugated oligosaccharides in biological events have been known to act a variety of roles in recognition phenomena.¹ This concept has attracted considerable attention in the receptor-binding properties of a variety of multi-antennary saccharide-conjugates such as polymers,² dendrimers,³ calixarenes,⁴ and cyclodextrins.⁵ We already reported natural oligosaccharide-branched cyclodextrins^{6a} which showed potential binding to lectin protein. We have been studied in the development of drug carriers for targeting drug delivery systems.

In the present research, the branch component, galactosylglucono-amide-ethanethiol was synthesized in the reaction between the lactonolactone⁷ and aminoethanethiol to combine in the amide linkage. Galactosyl-glucono-amide-ethanethiol was introduced at the *mono-* and *per-*C-6 position of halogenoβ-cyclodextrin.⁸ Purification by preparative HPLC was made until the product of a single peak was obtained. MS (FAB⁺): *m/z* 1532 [M+H+] for **1**; 3933 [M+H+] for **2.**

Figure 1. Structure of 1, 2 and DXR.

The saccharide-interaction of **1** and **2** with peanut lectin $(PNA)^9$ was confirmed with the competitive inhibition assay by addition of lactose as an inhibitor using optical biosensor based on SPR(IAsys, Biosensor Laboratory) as shown in Figure 2 (A for **1**, B for **2)**. PNA lectin was immobilized on metal surface in aminosilane cuvette intervening suberate diamide as a linker group in the same manner of the previous report.^{6b}

Figure 2. Confirmation of saccharide-interaction association by competitive inhibition with lactose addition using SPR. A: $[1] = 10^{-3} M + [lactose] = 5 \times 10^{-3} M$, B: $[2] = 10^{-3} M +$ [lactose] = 2×10^{-2} M in [acetate buffer] = 10^{-2} M (pH 5.3) + $[MgCl₂] = 10⁻³ M + [CaCl₂] = 10⁻³ M (1M=1 mol dm⁻³). Y-axis$ represents response in arc sec unit, the change of reflect angle, which is proportional to the associated amount on the sensor metal.

The association equilibrium constants (K_a) , association rate constants (k_{sec}), and dissociation rate constants (k_{diss}) of **1** and **2** with immobilized PNA were obtained. The results are shown in Table 1.

Table 1. Association parameters of 1 and 2 with immobilized **PNA**

	Products		K_a (\times 10 ³ M ⁻¹) k_{ass} (\times 10 M ⁻¹ s ⁻¹) k_{diss} (\times 10 ⁻³ s ⁻¹)			
		$81 + 02$	2.1 ± 0.2	±0.2 2.6		
		$130 + 10$	14 ± 01	±0.8		
Solvent: [acetate buffer] = 10^{-2} M (pH 5.3) + [MgCl ₂] = 10^{-3} M +						
$[CaCl2] = 10-3 M.$						

The ratio of the association equilibrium constant K_a (2 $/$ 1) in Table 1 was about 16. This may be regarded as a part of the oligosaccharide clustered effect which Y. C. Lee proposed.¹⁰

An inclusion-interaction of **1** and **2** with doxorubicin (DXR) was confirmed with competitive inhibition assay by addition of cyclohexanol as an inhibitor using SPR. (Figure 3, A for **1**, B for **2**).

The association equilibrium constants (K_a) , association rate constants (k_{ass}), and dissociation rate constants (k_{diss}) of **1** and **2** with immobilized DXR were obtained. The results are shown in Table 2.

Confirmation of inclusion association by Figure 3. competitive inhibition by cyclohexanol addition.

A: $[1] = 10^{3} M + [cyclohexanol] = 5 \times 10^{3} M$, B: $[2] = 10^{3}$ M + [cyclohexanol] = 5×10^{-3} M in [acetate buffer] = 10^{-2} $M(pH 5.3) + [MgCl₂] 10⁻³ M + [CaCl₂]10⁻³ M. DXR was$ immobilized on aminosilane cuvette using suberate as a linker group according to the previous report.

Table 2. Association parameters of 1 and 2 with immobilized DXR.

		Products K_s ($\times 10^3 \text{M}^{-1}$) k_{ass} ($\times 10^2 \text{M}^{-1} \text{s}^{-1}$	dss	
		1.2 ± 0.05		
		$+0$	—⊢∩⊿ 19.	
r. 1 cc 1 - כ- ה \sim \sim				

Solvent: [acetate buffer] = 10^{-2} M (pH 5.3)+[MgCl₂] = 10^{-3} M + $[CaCl₂] = 10⁻³ M.$

The ratio of association equilibrium constant K_a $(2 / 1)$ in Table 2 was about 21 .¹¹ The ratio was mainly attributed to the k_{diss} ratio (2 / 1). It is thought to form a complex like the scheme in Figure 4 in the inclusion association of **2** and DXR. In this case, the sugar-clustered cyclodextrin (**2**) is assumed to behave as a kind of induced-fit phenomena.

Figure 4. Scheme of complex structure of 2 with DXR.

In summary, the sugar-clustered cyclodextrin, *per-*C-6 oligosaccharide-branched cyclodextrin (**2**) was prepared in this study. It showed some effectiveness in measurements using SPR: the ratio of association constant with PNA and with DXR became about 16 times and about 21 times larger, respectively, in comparison to the corresponding parameters of the *mono-*C-6 oligosaccharide-branched cyclodextrin (**1**). This association behavior of sugar-clustered cyclodextrin will be important factors for application to a targeting drug-delivery system.

References and Notes

- 1 For a review: *"Essentials Glycobiology"* ed. by A. Varki, R. Cummings, J. Esko, H. Freeze, G. Hart, and J. Marth, Cold Spring Harbor Laboratory Press, Cold Spring Harbor (1999).
- 2 R. Roy, *Top. Curr. Chem.*, **187**, 241(1997)
- 3 D. Zanini and R. Roy, *J. Org. Chem.,* **63**, 3486(1998)
- 4 a) A. Dondoni, A. Marra, M. C. Scherrmann, A. Casnati, F. Sansone, and R. Ungaro, *Chem.Eur.J.*, **3**, 1774(1997). b) T. Fujimoto, C. Shimizu, O. Hayashida, and Y. Aoyama*, J. Am. Chem. Soc.*, **119**, 6676 (1997). c) T. Fujimoto, C. Shimizu, O. Hayashida, and Y. Aoyama*, J. Am. Chem. Soc.*, **120**, 601 (1998). d) K. Ariga, K. Isoyama, O. Hayashida, Y. Aoyama, and Y. Okahata*, Chem. Lett.,* **1998,** 1007.
- 5 a) J. J. García-López, F. Hernández-Mateo, J. Isac-García, J. M. Kim, R. Roy, F. Sautoyo-González, and A. Vargas-Berenguel, *J. Org. Chem.*, **64**, 522(1999). b) T. Furuike and S. Aiba*, Chem. Lett*.*,* **1999**, 69.
- 6 a) K. Matsuda, T. Inazu, K. Haneda, M. Mizuno, T. Yamanoi, K. Hattori, K. Yamamoto, and H. Kumagai, *Bioorg. Med. Chem. Lett*., **9**, 2353(1997). b) H. Imata, K. Kubota, K. Hattori, M. Aoyagi, and C. Jindoh*, Polymer J.*, **29**, 563 (1997).
- 7 K. Kobayashi, S. Kamiya, M. Matsuyama, T. Murata, and T. Usui, *Polym. J.*, **30**, 653 (1998)
- 8 a) K. Takeo, T. Sumimoto, and T. Kuge, *Die Staerke.*, **26**, 111 (1974). b) K. Takahashi, K. Hattori, and F. Toda*, Tetrahedoron Lett.*, **25**, 3331 (1984). c) L. D. Melton and K. N. Slessor*, Carbohydr. Res.*, **18**, 29 (1971). d) F. Guillo, B. Hamelin, L. Jullien, J. Canceil, J.-M. Lehn, L. D. Robertis, and H. Driguez*, Bull. Soc. Chim. Fr.,* **132**, 857 (1995).
- 9 R. Banerjee, K. Das, R. Ravishankar, K. Suguna, A. Surolia, and M. Vijayan, *J. Mol. Biol.,* **256**, 281 (1996).
- 10 Y. C. Lee and R. T. Lee, *, Acc. Chem. Res*., **28**, 321(1995).
- The ratio 21 was sustained by the observed association constant for 1 and 2 with DXR to be 2.1×10^3 M and 45×10^{3} M, respectively, by Benesi-Hildebrand plots at UV 230 nm. Job plots between **2** and DXR also showed 1:1 complex formation.